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It is shown that when using the relations of turbulent boundary- layer  theory for a fluid with vanishing 
viscos i ty  the standard values of the frict ion coefficients and Stanton numbers  are  defined in t e rms  of the 
Reynolds number 

R3* _ w08** p0 
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In estimating the influence of the t empera tu re  factor  on heat t r ans fe r  the form in which the results  are  
analyzed is of significant importance:  in t e rms  of the average flow paramete r s ,  as is done for pipe flow, 
or  in t e rms  of the pa ramete r s  at the outer edge of the boundary layer.  

N o t a t i o n s  

c f  = frict ion coefficient; S,R, P, N = Stanton, Reynolds, Prandtl ,  Nusselt  numbers  respectively;  p, 7, 
w, T, i = density, specific weight, velocity,  t empera ture ,  enthalpy; v, g, k = kinematic and dynamic v i scos i -  
ties and thermal  conductivity; T = tangential s t ress ;  6 , 6 " ,  5* *,  6~* = nominal, displacement,  momentum 
loss,  energy loss boundary layer  thicknesses;  y, ~ = t r ansve r se  coordinates;  r = t empera tu re  factor; D = 
pipe diameter .  

Subscripts:  w = quantities at the wall, 0 = conditions at the outer  edge of the boundary layer,  pipe 
centerl ine,  s tandard conditions; (> = average pa ramete r s .  

Turbulent boundary- layer  theory yields a connection between the relative change of the fr ict ion and 
heat t r ans fe r  coefficients and the t empera tu re  factor  for R ~ ~ which is independent of the empir ical  
"turbulence constants" [1-3]. 

In this case the question does not a r i se  of determining the Reynolds number to which the standard 
quantities in the following functions a re  to be r e fe r red :  

This is associa ted with the fact that 

e I N 
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and a large discrepancy in defining the Reynolds number does not ref lect  markedly  on the values of c f0 
and S O for R --" oo. 

However, in the region of quite small  tt this situation no longer holds and the indeterminancy intro- 
duced by the possibili ty of r e fe r r ing  the physical proper t ies  (p,/~) to different charac te r i s t i c  t empera tures  
may be ve ry  large.  

We shall examine this problem within the f ramework of asymptotic theory  but with account for finite- 
ness of the Reynolds numbers .  
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As is known, as  R ~ ~ t h e r e  is  d e g e n e r a t i o n  of the  v i s c o u s  s u b l a y e r  in the  s e n s e  tha t  i t s  r e l a t i v e  
m a g n i t u d e  

~ = ( yU6 )~O 

C o r r e s p o n d i n g l y ,  the  t e m p e r a t u r e  a t  t he  o u t e r  edge  of  the  v i s c o u s  s u b l a y e r  

Y 1 -->- Tv) 

i . e . ,  the  l a r g e r  t he  R e y n o l d s  n u m b e r ,  the  c l o s e r  to i s o t h e r m a l i t y  is  the  v i s c o u s  flow in the  i m m e d i a t e  v i -  
c i n i t y  of  the  w e t t e d  s u r f a c e .  Consequen t ly ,  unde r  t h e s e  cond i t ions  the  p a r a m e t e r s  of the  v i s c o u s  s u b l a y e r  
of the  n o n i s o t h e r m a I  t u r b u l e n t  b o u n d a r y  l a y e r  a r e  d e t e r m i n e d  by  the  we l l  known r e l a t i o n s  fo r  s t a n d a r d  
cond i t ions  when  r e f e r r i n g  the  p h y s i c a l  p r o p e r t i e s  to the  w a l l  t e m p e r a t u r e .  

As R -~ or we  have  

wl ( ~  / %)v._.,. vl  ('~w / ~), l ,  / v,,,,.-+ 'qlo (1) 

w h e r e ,  fo r  e x a m p l e ,  in the  t w o - l a y e r  m o d e l  of the  t u r b u l e n t  b o u n d a r y  l a y e r  ~10 = 11.6.  It is  i n t e r e s t i n g  to 
no te  tha t  t h i s  r e s u l t  is  in a c c o r d  wi th  the  e x p e r i m e n t a l  da t a  [5-7] even for  not  v e r y  l a r g e  R.  

F o r  s u b s o n i c  f low and s u f f i c i e n t l y  l a r g e  R the  funct ion  r has  the  f o r m  [2] 

q p =  [2 (t --  V ~ -  ('r - 1) ~-,.)] 2 
z ( , -  t)  

T (2) 
To ' z ~  - 2.5 ~7~Croln ~ ~ 

In t roduc ing  h e r e  the  v a l u e s  of  ~1, f r o m  (1) we f ind t ha t  

~ = ~ , - ~ o  - 2.5 V 1 7 ~ 0 1 .  VVV-~ (3) 

Zo = I - -  tOlo , RI** = w0~** 
~w 

If we  r e f e r  the  p h y s i c a l  p r o p e r t i e s  to the  t e m p e r a t u r e  T o o u t s i d e  the  b o u n d a r y  l a y e r  we have  

- -  ','o ' z = z2--~ zo - -  2 . 5  ~ 1 / - ~ i . l n  ~ -  ( 4 )  

If we r e f e r  the  d y n a m i c  v i s c o s i t y  ~ the  w a l l  t e m p e r a t u r e  T w and the  d e n s i t y  to  t he  s t r e a m  t e m p e r a -  
t u r e  To, a s  was  done  in [4], we  have  

R a * *  __ wo6**po 
~ .  (5) 

z = z3 --+ Zo - -  ~.o V "/,~csoin V~" (6) 

In (4), m is the  exponen t  of  t he  t e m p e r a t u r e  r e l a t i o n  

1 I~o = T / To) m 
F i g u r e  1 shows  the  r e l a t i o n  

~~ = I(r '~~ = ~ 1 ~ 

C u r v e s  1, 2, 3 w e r e  c a l c u l a t e d  us ing  (2) and (6) for  t he  v a l u e s  R~*  = 500, 104, 108 r e s p e c t i v e l y ;  
c u r v e s  4, 5 w e r e  c a l c u l a t e d  us ing  (2)-(4) f o r  the  v a l u e s  R~ * = R~*  = 10 ~ W e  a s s u m e d  s i m i l a r i t y  of t he  
v e l o c i t y  and t e m p e r a t u r e  f i e l d s ,  and the  s t a n d a r d  f r i c t i o n  c o e f f i c i e n t  was  found f r o m  the  K a r m a n  equa t ion  

]/2/CSo = 2.5 In B** + 3.8 (7) 

The  quan t i t y  
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Fig. 1. Ratio ~ / ~  as a function of r for va r i -  
ous R * * :  1) R~* =500; 2) 104; 3) 106; 4) R~* = 
10G;5) R~* =107. 
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Fig. 2. Relation (N) = f ( ( R ) )  
for stabilized segment of pipe 
T w / ( T  ) = 0.2-0.7: O) experi-  
ment; ) f rom (10). 

was calculated using the power law co = ~n  where the quantity n was 
taken for the given R** in converting (7) to the power fr ict ion law. 

We see that if we select  R** in accordance  with (5) the limiting 
frict ion law for subsonic flow 

2 2 

also descr ibes  sa t is factor i ly  the region of finite R. Here we emphasize 
that this definition of R** should be considered not as a purely formal  
definition, but ra ther  as an exact definition for large R. 

We note that most  of the experimental  data f rom study of the effect 
of the t empera tu re  factor  on heat t r ans fe r  were  obtained for conditions 
of gas flow in the stabilized segment  of a pipe. In this case the gas v is -  
cosi ty and thermal  conductivity were  based on the average s t r eam tem-  
perature;  the t empera tu re  head was found as the difference between the 

average  s t r eam tempera tu re  and the wall tempera ture ;  the velocity which enters into R was taken as the 
d ischarge  average velocity. Most of these experiments  show weak influence of nonisothermali ty on the 
heat t r ans fe r  or  pract ical ly  no such influence. 

Data were  obtained in [8] on the heat t r ans fe r  under conditions of significant nonisothermali ty in the 
initial and stabilized segments  of a cyl indrical  pipe. The experimental  data were  analyzed just  as in the 
case  of external flow, i.e., with respec t  to the pa ramete r s  P0,Wo, AT = T o - T  w. It was shown that the 
relat ion 

S -- ~F 0.0t26 
(/r p0.7~ (9) 

is valid for both the initial and stabilized segments ,  and the relat ion ~ / f ( r  for these segments  with ac-  
count for (5) is c lose  to the limit given by (8). Figure  2 shows these experimental  data for the stabilized 
par t  of the pipe in the form of the average Nusselt  number  versus  the average  Reynolds number 

( N )  : f ( ( R ) )  

The numbers  (N) ,  (R)  were found f rom the average values ( p ) ,  (w) ,  AT = ( T ) - T w ,  ~ and k were  
based on ( T ) .  The values of T w / ( T  } var ied f rom 0.2 to 0.7. We see f rom Fig. 2 that in this form the 
effect of the t empera tu re  factor  can be neglected. 

This conclusion is also conf i rmed by the approximate theoret ical  calculation, in which the relation 
(9) for the stabilized segment  was r e f e r r ed  to the pa ramete r s  (p) ,  (w) ,  AT = ( T ) - T w ,  (p}, (•) in ap- 
plication to the experimental  conditions of [8]. 

Assuming s imi la r i ty  of the velocit ies and enthalpies, we found the displacement and energy loss 
thicknesses  

1 2~ (l 
0 
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w h e r e  

1 
25T**__~ pw ( ~ _ _ f - - i  w 
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p t w i --  iro 
po - ~ _ (~ _ ~) ~,/, , ~ = --~o = ",o- i~ = ~I, 

The  v a l u e  of (Tw> was  found f r o m  the  equa t ion  

The  a v e r a g e  v a l u e  ( T )  was  found in t e r m s  of  ( i )  

YoWo (io - -  i~) (D - -  25T**) ~ = (yw> ((i> - -  i~) D ~ 

Knowing R* * ,  f r o m  (9) we can  find the  m a g n i t u d e  of the  h e a t  f lux q and then  the  a v e r a g e  v a l u e  of the  

Nusselt number 

qD 
<AT> -- (<r> --  r,~) <~> 

The  v a l u e  of (No) fo r  i s o t h e r m a l  cond i t i ons  was  found f r o m  the  known equa t ion  

<No> = 0.018 <R) o,8 (<R> = 
<Tw) D~ 
g <~> ] 

The  c a l c u l a t i o n s  show tha t  the  v a l u e s  of ( N ) / ( N o )  a r e  s m a l l e r  than ' Is  in (9) by  10-15%. 

(10) 
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